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Abstract. We present a shell-model of fractal induced turbulence which predicts that structure function
scaling exponents decrease in absolute value as the fractal dimension of the turbulence-inducing fractal
object increases. This qualitative prediction is in agreement with laboratory measurements. Finer details
of the fractal induced turbulence statistics and dynamics depend on the fractal force’s phases, i.e. on
the detailed construction of the fractal stirrer. In a case of deterministic forcing phases, a critical fractal
dimension exists below which the average rate of inter-scale energy transfer 〈Tn〉 is a decreasing function of
the wavenumber kn and the structure function scaling exponents take close to Kolmogorov values. Above
this critical fractal dimension, 〈Tn〉 is an increasing function of kn and the structure function scaling
exponents deviate significantly from Kolmogorov values.

PACS. 47.27.Ak Fundamentals – 47.27.Gs Isotropic turbulence; homogeneous turbulence

1 Introduction

Turbulence has a multiple scale structure and many theo-
ries and geometrical models of turbulence have in fact as-
sumed the turbulence to be of fractal or spiral nature [1–4].
This inspired a new experimental setup where the turbu-
lence is forced by a 3-D fractal grid. It was found that a
change in the fractal dimension of the grid alters the scal-
ing of the structure functions of the turbulence generated
by the fractal grid [5].

In this paper we force a shell-model of turbulence in
a way equivalent to the forcing generated by the fractal
object in the laboratory experiment. Shell-models are re-
duced models of Navier-Stokes turbulence and they sim-
ulate the flow of energy among different wave-numbers in
fully developed turbulence.

A brief description of the experiment and its fractal
forcing is introduced in the next section. The shell-model
used and its scale-invariant forcing are introduced in Sec-
tions 3 and 4. The numerical results are presented in
Sections 5 and 6, and we conclude with a discussion in
Section 7.

a e-mail: b.mazzi@damtp.cam.ac.uk
b e-mail: j.c.vassilicos@ic.ac.uk

Fig. 1. The fractal object.

2 Fractal forcing in the laboratory

Measurements of fractal induced turbulence were con-
ducted by Queiros-Conde and Vassilicos [5] and a detailed
description of the apparatus and the equipment can be
found in [5]. Four fractal objects of fractal dimensions
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D1 = 2.05, D2 = 2.17, D3 = 2.40, D4 = 2.75 were placed
in the wind tunnel. A schematic picture of the actual ob-
ject is given in Figure 1.

The objects were obtained by iterating the pattern of
a combined double-cross with similar crosses placed at its
eight ends (see Fig. 1). The ratios between successive char-
acteristic lengths in the iteration were, respectively for
each of the four fractal objects: R1 = 0.36, R2 = 0.4,
R3 = 0.45, R4 = 0.5. Constraints on the number of pos-
sible iterations were set by the size of the wind tunnel
and the smallest scale of the fractal objects, which was
about 2 mm. Hence for three of the objects the pattern
was iterated four times, whereas for the one with fractal
dimension D4 = 2.75 it was iterated five times.

When turbulence is created by forcing a certain flow,
e.g. with an obstacle, the forcing is usually confined at
a particular large length scale. By using a fractal object,
however, we force the flow over a wide range of length-
scales simultaneously from the largest to the smallest in
the fractal structure. In the course of the study of turbu-
lence, particularly since the 1960s, numerous models and
approaches have assumed that turbulence is effectively a
fractal phenomenon and great attention has been paid to
the scaling of structure functions as a function of some
fractal dimension of the flow [1–3,5,6]. Applying a fractal
forcing to the flow is directly addressing the heart of the
matter which is the multiscale structure of the turbulence
on which the relation between the kinetic energy dissipa-
tion of the turbulence and the Reynolds number crucially
depends. Hence by acting on the multiscale structure of
the turbulence itself we may expect the scalings of struc-
ture functions to be affected.

3 The GOY shell-model

All shell-models simulate the flow of energy through
wavenumber space in fully developed turbulence. The
dynamics of the models are determined by a system
of coupled ordinary differential equations where energy
is injected into some of the wave-numbers by a time-
independent forcing term. The energy is transported
across wave-numbers by means of a coupling term and
is dissipated away by a viscosity term at the high wave-
numbers.

3.1 Construction

Unlike direct numerical simulations of the Navier-Stokes
equations, shell-models are based on assumptions which
reduce the number of free variables.

Firstly, wave-number space is divided into a set of N
spherical shells of wave-number kn = k0λ

n n = 1, . . . , N
where λ is the ratio between successive shells (normally set
equal to 2) and k0 is a constant determining the smallest
wavenumber in the model. Each shell is assigned a sin-
gle complex velocity amplitude un. The absolute value of
un is often thought of as a velocity difference across the
length-scale `n = 1/kn in the turbulent flow-field.

Secondly, using additional assumptions of conservation
of phase space and energy and locality of direct interac-
tions among shells (nearest and next nearest) one can ob-
tain the GOY-model set of evolution equations [7–10](

d
dt

+ νk2
n

)
un = ikn(u∗n+1u

∗
n+2 −

δ

2
u∗n−1u

∗
n+1

− 1− δ
4

u∗n−2u
∗
n−1) + fn (1)

with a forcing fn ≡ f(kn) on the shells. The set (Eq. (1))
of N coupled ordinary differential equations is numeri-
cally integrated by standard techniques [12]. In the simu-
lations we use the following standard values: N = 19, ν =
10−6, k0 = 2−4. The parameter δ controls the transition
between the different dynamics of the model, going from
a constant solution to limit cycle, torus and at the end a
chaotic behaviour as δ is increased [10]. The demand of
helicity conservation implies δ = 1

2 , which is the standard
value for the GOY shell-model [9].

3.2 Conservation laws, fixed points and invariance

Shell-models are by construction simpler than the Navier-
Stokes equations but they possess the same conservation-
laws. In the GOY-model, as is the case for other shell-
models, these conservation laws are strictly valid in the
absence of forcing and viscosity (f = 0, ν = 0).

There is conservation of phase-space because the cou-
pling term does not contain un, and the other conserved
quantities are quadratic i.e. they can be written in the
form: Qα =

∑
kαn |un|2. Using the relation 1

2
˙(u2
n) = unu̇n

to derive an equation for Qα from equation (1), leads
to conservation of Qα for f = 0 and ν = 0 when
1 − δ2α − (1 − δ)22α = 0 This condition has two solu-
tions: α = 0 and α = − lnλ(δ − 1). The first (α = 0)
corresponds to energy-conservation while the other solu-
tion corresponds to helicity conservation in the case of
three dimensional turbulence (δ < 1) and to enstrophy
conservation in the case of two dimensional turbulence
(δ > 1) [9,11,12].

4 Fractal forcing in the GOY shell-model

In the standard GOY-model, the forcing is time indepen-
dent and applied to one of the lowest wavenumber shells
(most frequently the fourth one). With such forcing the
model reproduces the Richardson cascade of turbulence
whereby the energy is fed into the low wave-numbers,
cascades up the inertial subrange of wavenumbers and
is then dissipated away by viscosity at the largest wave-
numbers [13].

To simulate the forcing of a fractal object producing
turbulence in a flow, we force every single shell of the
GOY-model equation given by equation (1). To respect
the scaling-invariance of the fractal, the forcing is taken
to vary as a power-law of wave-number, i.e.

fn ∼ k β
n . (2)
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4.1 Relation between R and β

The fractal dimension of the fractal object is determined
by only one parameter which is the ratio R between length
scales in successive iterations of the fractal construction
(see Fig. 1). Characteristic lengths of crosses at iteration n
are given by:

Ln = RnL0 (3)

and the diameters of the rods that these crosses are made
of are determined by the same ratio, i.e. Dn = RnD0.

We assume that the force fn at length-scale Ln is pro-
portional to the drag on structures of that length-scale,
and we also assume that the total drag is proportional
to the total surface. We therefore need to calculate the
total surface S(Ln) of structures characterised by length-
scale Ln. This calculation leads to an overestimate of the
total drag force, but may be a sufficiently good estimate
in the limit of very small aspect ratios D0/L0.

This total surface is proportional to the total num-
ber of rods at a given iteration n (there are 4 rods per
cross, i.e. 8 per double cross) times the surface of a rod
of length-scale Ln (see Appendix in [5]) i.e.

Sn = 4L0D0

(
1
R

+R

)(
8R2

)n ∼ (8R2
)n ∼ fn. (4)

Using equation (3) in conjunction with equation (4)
leads to

fn ∼ exp
(
(ln 8 + 2 lnR) ln `

lnR

)
= Ln

ln 8
lnR+2

. (5)

Let us replace Ln by k−1
n in equation (5); we obtain fn ∼

k
−( ln 8

lnR+2)
n and comparing with equation (2) gives

β = −
(

3
ln 2
lnR

+ 2
)
. (6)

Note that because 0 ≤ R ≤ 1/2, β has to be within the
range −2 ≤ β ≤ 1. The relation between R and Df is
detailed in [5], and for the fractal objects used in [5], the
correspondence between R, Df and β is as follows:

R Df β
0.36 2.05 0.035
0.4 2.17 0.27
0.45 2.4 0.60
0.5 2.75 1.0

4.2 Simple relations between α and β

We now consider power law solutions un ∼ kαn and ob-
tain a relation between α and β from a consideration
concerning the energy flux through a shell n. As for the
Navier-Stokes equations [14] a scale-by-scale energy bud-
get equation can also be obtained for shell-models. In the

present case of the GOY model, this scale by scale energy
budget is derived from equation (1) and reads

∂En
∂t

+ Tn = −2νΩn +
1
2

(fnu∗n + f∗nun) (7)

where

En ≡
1
2
|un|2, (8)

Ωn ≡
1
2
k2
n|un|2 (9)

and [15]

Tn = −=
[
knunun+1

(
un+2 −

δ

2
un−1

)
−knun

1− δ
4

un−2un−1

]
. (10)

Statistical stationarity in time requires

∂〈En〉
∂t

= 0 (11)

where the brackets denote a statistical average (in Sect. 5
we explain how this average is taken in practice) and in
the limit where ν → 0 the scale by scale energy budget
reduces to

〈Tn〉 ≈
1
2
〈fnu∗n + f∗nun〉. (12)

The energy flux is defined as

ΠN =
N∑
n=1

〈Tn〉. (13)

Assuming power law solutions un ∼ kαn and using equa-
tion (12), we get

ΠN =
1
2

N∑
n=1

〈fnu∗n + f∗nun〉 ∼
N∑
n=1

kα+β
n (14)

because fn ∼ kβn. Note that we neglect the potential ef-
fects of the phases of the complex quantities fn and un. It
follows from 14 that ΠN is independent of N if α+β < 0.
We might expect the N -independence of ΠN to imply
Kolmogorov scaling and therefore α = −1/3. Hence, for
β < 1/3 we might predict α = −1/3. For β ≥ 1/3, how-
ever ΠN is not independent of N and Kolmogorov scaling
cannot be expected to hold. Instead, we note from equa-
tion (10) that Tn ∼ knu

3
n and using also equation (12),

un ∼ kαn and fn ∼ kβn we obtain

α =
β − 1

2
· (15)

We have neglected the effect of the complex phases on
the average values 〈Tn〉 and 〈fnu∗n〉 which could invali-
date equation (15). We must in fact assume that these



246 The European Physical Journal B

complex phases do invalidate equation (15) in the range
β < 1/3 where we expect α = −1/3 because of the
N -independence of ΠN in that range. Our numerical sim-
ulations reported in Section 5 indicate that they also in-
validate equation (15) in the range β > 1/3 but not the
qualitative conclusion that α is an increasing function of
β in that range.

Note that equation (15) implies α = −1/3 for β = 1/3
and that −1/3 ≤ α < 0 for 1/3 ≤ β ≤ 1. All in all, our
theory predicts that α = −1/3 for −2 < β ≤ 1/3 and
that α increases above −1/3 as β increases in the range
1/3 < β < 1. The line α + β = 0 in the α − β plane
is worth mentioning as it delineates between regions of
N -dependent and N -independent energy flux. The aver-
age energy transfer 〈Tn〉 is an increasing function of kn
where α + β > 0 and a decreasing function of kn where
α+ β < 0.

4.3 Amplitude and phase of the forcing

The fact that the coupling term in equation (1) gives,
when multiplied by un, three terms all similar within pref-
actors and index displacements, means that the dynamics
of the model are invariant with respect to the following
phase transformation [16]:

un → eiAun (16)

un+1 → ei(B−A)un+1 (17)

un+2 → e−iBun+2 (18)

where n modulo 3 is equal to 1 and where A and B are
arbitrary constants.

Let us complement equation (2) as follows: fn =
feiθfkβn where f is real and positive and θf is the phase
of the forcing. In this paper we experiment with various
models for θf . First, we assume that the velocity phases
are dominated by the forcing phase so that we should ex-
pect un = |un|eiθf . This assumption is reasonable because
the arbitrary phases are constants of the phase transfor-
mation described above and can be chosen so that all
the shells have approximately the same phase. Inserting
un = |un|eiθf in equation (1), dividing both sides by
eiθf and requiring all the terms to be real-valued yields
ie−i3θf = ±1. This implies that θf = π(1

6 + 1
3h), h = 1, ..., 6

and, for simplicity’s sake, we chose h = 1, thus making the
forcing pure imaginary:

fn = ifkβn. (19)

When not specified in the following sections the forcing
is modelled as in equation (19) with f constant in time.
However another case, referred to as ST1, is tested in this
paper in which the forcing is also given by equation (19)
but with f a real random number generated at every time
step within the range 1× 10−3 < f < 10× 10−3 (it there-
fore oscillates around the usual value f = 5× 10−3).

Fig. 2. The second order structure function versus the shell
number, for different values of β, ranging from β = −1/3 (the
steepest) to β = 1 (the shallowest). (The laboratory experi-
ment limits us to β < 1 but the numerical simulations can
be run for higher values of β too.) In all subsequent figures,
numerically calculated scaling exponents are given with error
bars which quantify the GOY model’s oscillations around the
power law fit.

Finally, three other different cases are tested here
where the forcing phases are also chosen randomly: these
cases are labeled ST2, ST3 and ST4.

• ST2 The forcing is defined as

fn = Zfkβn (20)

where Z is a complex random number chosen among

the six possible combinations ±i, ±
√

(3)

2 ± i
2 and f =

5× 10−3.
• ST3 The forcing is defined as

fn = Zfkβn (21)

where Z is a complex random number chosen under
the constraint |Z| = 1 and f = 5× 10−3.
• ST4 The forcing is defined as

fn = Zfkβn (22)

where Z is a complex random number chosen among

the six possible combinations ±i, ±
√

(3)

2 ± i
2 and f is a

real random number chosen such that 1× 10−3 < f <
10× 10−3.

In all stochastic cases, the random number generation oc-
curred at every time step.

5 Numerical results

It is customary in studies of shell-models to consider that
the un characterise velocity differences across length-scales
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Fig. 3. α as a function of β for different strengths of forcing.

`n ∼ k−1
n and from that calculate the surrogate structure

function 〈|un|p〉. These surrogate structure functions are
assumed to scale with k−1

n in the same way that 〈|δu(l)|p〉
scale with l, i.e.

〈|un|p〉 ∼ kξpn (23)

where ξp are the same as the usual structure function scal-
ing exponents but negative. Note that ξ1 = α.

The measurements are taken as follows: the simula-
tion runs over a total of 5 × 105 time steps. During each
time step the five first powers of |un| are calculated and
summed with their previous values. After the run these
sums divided by the total number of time steps give 〈|un|p〉
for different n and p and the exponents ξp are extracted
using equation (23). We have checked the convergence of
the exponents during the simulation, by calculating and
recording these exponents 50 times uniformly spaced along
the entire time-span of the simulations.

The measured values of ξ1 = α and ξ2, ξ3, ... are func-
tions of β and will thus be denoted α(β), ξ2(β), ξ3(β) etc.
Even though the scaling regions defining these exponents
are generally the same for different values of the parame-
ters of the model, it turns out that some variation occurs
for extreme parameter-values. Because no simple mathe-
matical criteria for choosing scaling regions exist, the re-
gions are defined by visual inspection. As an example of
the different scalings of a structure function with chang-
ing β, Figure 2 shows the second order structure function
in the case where the forcing is fully deterministic with
amplitude f = 5× 10−3 and δ = 0.5.

5.1 Relation between α and β

Figure 3 shows α(β) for three different values of f , where
f = 5×10−3 is the standard value. As expected, the three
α(β) curves overlap nicely especially for β < 1 (note that
the laboratory experiments of [5] limit us to β < 1 any-
way). We do find that α is constant for β < −1/3 but at

Fig. 4. α as a function of β for different values of δ.

a value slightly less than the predicted −1/3. This devi-
ation from −1/3 may be an imprint of intermittent be-
haviour [11] the study of which is beyond the scope of this
paper however. For β = 1/3 α is very close to the predicted
−1/3 and α does indeed increase with β as predicted for
β > 1/3 but not according to equation (15). The theory
of Section 4 does therefore capture salient features of the
β-dependence of α but not quantitative details which are
presumably sensitive to phase dynamics.

If the requirement of helicity conservation is dropped, δ
becomes a free parameter of the model. Because δ controls
the amount of chaos in the dynamics of the model [17] we
enquire how changes in δ may affect the scalings of the
structure-functions. In Figure 4 we plot α(β) for standard
forcing (f = 5 × 10−3), but for five different values of
δ ranging from just above the onset of chaotic dynam-
ics at δ = 0.4 to a limit-value δ = 1.0 where the tur-
bulent nature of the shell-model dynamics have already
been questioned [18]. We observe that, with the excep-
tion of δ = 1, α = −1/3 at β = 1/3 for all values
δ = 0.4, 0.5, 0.6, 0.8. Also, again with the exception of
δ = 1, α remains an increasing function of β albeit with
some systematic δ-variability particularly at values of β
smaller than 1/3 where α(β) tends towards α = −1/3 as
δ decreases.

6 Comparison with experiment

In their laboratory experiments, Queiros-Conde and
Vassilicos [5] measured the exponents ξ2 and ξ3 as func-
tions of Df . For comparison ξ2 is plotted in Figure 5
as a function of β for different strengths of forcing. No
dependence on the amplitude of the forcing is observed
and the behaviour of ξ2(β) resembles that of 2α(β). The
Kolmogorov value ξ2 = −2/3 is obtained for β = 1/3,
the value of β where Tn is independent of kn. Note that
ξ2 ≈ −2/3 for β ≤ −1/3 indicating that ξ2 remains
unchanged by a rate of transfer of energy which decel-
erates with increasing kn (implying an energy flux ΠN
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Fig. 5. ξ2 as a function of β for different strengths of forc-
ing with experimental values given (thicker bars) as a range
of values (see explanation for this range of values in the first
paragraph of Sect. 6).

independent of N). It is when the rate of transfer of energy
is forced to accelerate with increasing kn that ξ2 switches
from the classical value −2/3 towards values larger than
−2/3. This qualitative behaviour of ξ2(β) is confirmed by
values of ξ2 experimentally measured in the laboratory
which are shown in Figure 5 with the symbol commonly
used for error-bars (in the laboratory experiments of [5]
the ratio of the largest length-scale to the smallest re-
solved length-scale of the turbulence is not more than 100
and as in many other turbulence experiments such a ratio
did not prove sufficient for the existence of well defined
power-laws; therefore the experimental results instead of
featuring Sp(r) plotted as a function of scale, present ξp
plotted as a function of the scale. This explains the “error
bars” in Figures 5 and 6: they do not represent an actual
error but rather the range of values taken by the expo-
nent ξp. In our shell-model, however, the ratio of outer to
inner length-scales is larger than 105).

In Figure 6 we plot ξ2(β) for standard forcing but for
five different values of δ. The conclusions to be drawn for
ξ2(β) are broadly the same as those drawn for α(β) from
Figure 4. Note also that the δ-variation of ξ2(β) does not
improve the quantitative comparison between laboratory
values and shell-model values of ξ2. In fact, ξ2 takes the
Kolmogorov value −2/3 at β = 1/3 only for the standard
value δ = 0.5 where the GOY model is as close as pos-
sible to the Navier-Stokes equations because of helicity
conservation.

In Figure 7 the value of the third order structure func-
tion scaling exponent ξ3 is plotted as a function of β for
different strengths of forcing: the behaviour of the function
agrees qualitatively with the results of the experiment. In
Figure 8 ξ3 is plotted versus β for different values of δ.
These two figures confirm and widen the conclusions al-
ready drawn from the previous figures.

Fig. 6. ξ2 as a function of β for different values of δ with
experimental values given (thicker bars) as a range of values
(see explanation for this range of values in the first paragraph
of Sect. 6).

Fig. 7. ξ3 as a function of β for different strengths of forcing.

Fig. 8. ξ3 as a function of β for different values of δ.
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Fig. 9. S2,3 as a function of β for different strengths of forc-
ing with experimental values given (thicker bars) as a range
of values (see explanation for this range of values in the first
paragraph of Sect. 6).

Fig. 10. S2,3 as a function of β for different values of δ with
experimental values given (thicker bars) as a range of values
(see explanation for this range of values in the first paragraph
of Sect. 6).

We apply now the extended self-similarity (ESS) way
of plotting structure functions [14,19] and look for a scal-
ing between the second and third order structure-function,

〈|un|2〉 ∼ 〈|un|3〉S2,3 . (24)

The comparison between values of S2,3 from the model
and the laboratory experiments is shown in Figures 9
and 10 for different strengths of forcing and different
values of δ. Contrary to ξ2 and ξ3 there is no qualitative
agreement between the β-dependence of S2,3 in the
shell-model and that of S2,3 in the laboratory experi-
ment. Because S2,3 = ξ2/ξ3 this means that whereas ξ3
decreases at a faster rate than ξ2 with increasing Df in
the laboratory experiment, in the shell model ξ3 decreases
at a slower rate than ξ2 with increasing Df .

Fig. 11. ξ2 as function of β for the stochastic case ST1 with
error bars. The horizontal line indicates Kolmogorov value
of −2/3.

Fig. 12. ξ3 as function of β for the stochastic case ST1 with er-
ror bars. The horizontal line indicates Kolmogorov value of −1.

7 Dependence on forcing model

Figures 11 and 12 show the value of the exponent of the
second and third order structure functions respectively for
the case ST1: for low values of β, and in particular for
β = 1/3, these results are in qualitative and quantita-
tive agreement with the previous ones, it is not however
the case for values β � 1/3 where the agreement is only
qualitative. It might not be too surprising that such a
disagreement occurs in that region because random fluc-
tuations of the forcing amplitude are increased by a larger
exponent of kn. However it is harder to see why such dis-
agreement should result in a consistently lower value of
the exponent ξ2.
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Fig. 13. ξ2 as function of β for the stochastic cases ST2, ST3,
ST4 with error bars. The horizontal line indicates Kolmogorov
value of −2/3.

Fig. 14. ξ3 as function of β for the stochastic cases ST2, ST3,
ST4 with error bars. The horizontal line indicates Kolmogorov
value of −1.

Figures 13 and 14 are similar plots for the remaining
cases where the forcing phases are random. The results re-
main qualitatively unchanged insofar as ξ2 and ξ3 remain
increasing functions of β, but there are important quan-
titative differences. For example ξ2 = −2/3 and ξ3 = −1
are now achieved at a value of β significantly smaller than
1/3 and rather close to 0. These quantitative differences
are brought out more dramatically in plots of S2,3 versus
β (see Figs. 15 and 16) where they even imply a qualita-
tive difference in behaviour from Figure 9 at values of β
larger than 0.6.

Fig. 15. S2,3 as function of β for the stochastic cases ST1
with error bars. The horizontal line indicates Kolmogorov value
of −2/3.

Fig. 16. S2,3 as function of β for the stochastic cases ST2,
ST3, ST4 with error bars. The horizontal line indicates
Kolmogorov value of −2/3.

8 Conclusion

In this paper we have developed a shell model of fractal-
induced turbulence. The motivation for this work lies in
a recent laboratory experiment [5] where turbulence was
created by a fractal grid object (see Fig. 1) in a wind
tunnel. In the shell model the fractal forcing is modelled
by a power law forcing of the GOY equations (Eq. (1)) of
the form

fn ∼ kβn. (25)

A simple argument based on drag considerations sug-
gests that β is an increasing function of the fractal dimen-
sion Df of the fractal object. Reasoning on the scale-by-
scale energy budget and energy flux, and assuming statis-
tical stationarity and power-law solutions un ∼ kαn leads
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to α = −1/3, ξ2 = −2/3 and ξ3 = −1 for β ≤ 1/3 and to
α, ξ2 and ξ3 being increasing functions of β for β ≥ 1/3.
Numerical integrations of the fractal forced shell-model
equations support these conclusions for a variety of values
of δ strictly smaller than 1. The critical value β = 1/3 is
indeed observed when the phases of the fractal forcing are
not random but not when they are random. We note that
ξ2 and ξ3 are increasing functions of β (and therefore of
Df ) in agreement with experimental results [5].

The results, in particular ESS, are sensitive to the
modelling of the fractal forcing phases. It is possible to
imagine the forcing phases in spectral space as correspond-
ing to the shape of the fractal object in real space. Differ-
ent fractal objects can be built with the same fractal scal-
ing (and therefore same fractal forcing scaling fn ∼ kβn)
but different fractal phases. The present study supports
the idea that fractal forcing can alter turbulence scalings
and dynamics, but also suggests that details of the frac-
tal construction other than the fractal dimension can have
measurable effects too. For example, fractal forcing with
random phases can generate an increasing dependence of
the ESS exponent ξ2/ξ3 on Df , as indeed observed in the
laboratory experiment of [5] but in a different range of
Df values (though the relation between β and Df given in
this paper might not be quantitatively accurate enough to
compare these ranges). On the other hand, fractal forcing
with constant phases produces a decreasing dependence
of ξ2/ξ3 on Df .

We have shown in Section 4 how scaling exponents
can change as a result of the fractal forcing modifying
energy flux by, in fact, accelerating it at smaller scales.
Numerical and laboratory experiments with fractal forced
turbulence provide, therefore, a new tool for the investi-
gation of the dynamics, scaling and phases of turbulent
flows. More laboratory research is needed with different
fractal objects and a better understanding is also needed
of the numerical modelling of the fractal forcing applied
by different fractal objects.
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